Logo Search packages:      
Sourcecode: inkscape version File versions  Download package

render_barcode_datamatrix.py
#!/usr/bin/env python 
# -*- coding: UTF-8 -*-
'''
Copyright (C) 2009 John Beard john.j.beard@gmail.com

######DESCRIPTION######

This extension renders a DataMatrix 2D barcode, as specified in
BS ISO/IEC 16022:2006. Only ECC200 codes are considered, as these are the only
ones recommended for an "open" system.

The size of the DataMatrix is variable between 10x10 to 144x144

The absolute size of the DataMatrix modules (the little squares) is also
variable.

If more data is given than can be contained in one DataMatrix,
more than one DataMatrices will be produced.

Text is encoded as ASCII (the standard provides for other options, but these are
not implemented). Consecutive digits are encoded in a compressed form, halving 
the space required to store them.

The basis processing flow is;
    * Convert input string to codewords (modified ASCII and compressed digits)
    * Split codewords into blocks of the right size for Reed-Solomon coding
    * Interleave the blocks if required
    * Apply Reed-Solomon coding
    * De-interleave the blocks if required
    * Place the codewords into the matrix bit by bit
    * Render the modules in the matrix as squares

######LICENCE#######
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

######VERSION HISTORY#####
    Ver.       Date                       Notes
    
    0.50    2009-10-25  Full functionality, up to 144x144.
                        ASCII and compressed digit encoding only.
'''

import inkex, simplestyle

import gettext
_ = gettext.gettext
    
#ENCODING ROUTINES ===================================================
#   Take an input string and convert it to a sequence (or sequences)
#   of codewords as specified in ISO/IEC 16022:2006 (section 5.2.3)
#=====================================================================
    
#create a 2d list corresponding to the 1's and 0s of the DataMatrix
def encode(text, (nrow, ncol) ):
    #retreive the parameters of this size of DataMatrix
    data_nrow, data_ncol, reg_row, reg_col, nd, nc, inter = get_parameters( nrow, ncol )

    if not ((nrow == 144) and (ncol == 144)):   #we have a regular datamatrix
        size144 = False
    else: #special handling will be required by get_codewords()
        size144 = True
        
    #generate the codewords including padding and ECC
    codewords = get_codewords( text, nd, nc, inter, size144 )
    
    # break up into separate arrays if more than one DataMatrix is needed
    module_arrays = []
    for codeword_stream in codewords:  #for each datamatrix
        bit_array = place_bits(codeword_stream, (data_nrow*reg_row, data_ncol*reg_col)) #place the codewords' bits across the array as modules
        module_arrays.append(add_finder_pattern( bit_array, data_nrow, data_ncol, reg_row, reg_col )) #add finder patterns around the modules
    
    return module_arrays

#return parameters for the selected datamatrix size
#   data_nrow   number of rows in each data region
#   data_ncol   number of cols in each data region
#   reg_row     number of rows of data regions
#   reg_col     number of cols of data regions
#   nd          number of data codewords per reed-solomon block
#   nc          number of ECC codewords per reed-solomon block
#   inter       number of interleaved Reed-Solomon blocks
def get_parameters(nrow, ncol):

    #SQUARE SYMBOLS
    if ( nrow ==  10 and ncol ==  10 ):
        return  8,  8, 1, 1, 3, 5, 1
    elif ( nrow ==  12 and ncol ==  12 ):
        return 10, 10, 1, 1, 5, 7, 1
    elif ( nrow ==  14 and ncol ==  14 ):
        return 12, 12, 1, 1, 8, 10, 1
    elif ( nrow ==  16 and ncol ==  16 ):
        return 14, 14, 1, 1, 12, 12, 1
    elif ( nrow ==  18 and ncol ==  18 ):
        return 16, 16, 1, 1, 18, 14, 1
    elif ( nrow ==  20 and ncol ==  20 ):
        return 18, 18, 1, 1, 22, 18, 1
    elif ( nrow ==  22 and ncol ==  22 ):
        return 18, 18, 1, 1, 30, 20, 1
    elif ( nrow ==  24 and ncol ==  24 ):
        return 22, 22, 1, 1, 36, 24, 1
    elif ( nrow ==  26 and ncol ==  26 ):
        return 24, 24, 1, 1, 44, 28, 1
    elif ( nrow ==  32 and ncol ==  32 ):
        return 14, 14, 2, 2, 62, 36, 1
    elif ( nrow ==  36 and ncol ==  36 ):
        return 16, 16, 2, 2, 86, 42, 1
    elif ( nrow ==  40 and ncol ==  40):
        return 18, 18, 2, 2, 114, 48, 1
    elif ( nrow ==  44 and ncol ==  44):
        return 20, 20, 2, 2, 144, 56, 1
    elif ( nrow ==  48 and ncol ==  48 ):
        return 22, 22, 2, 2, 174, 68, 1
        
    elif ( nrow ==  52 and ncol ==  52 ):
        return 24, 24, 2, 2, 102, 42, 2
    elif ( nrow ==  64 and ncol ==  64 ):
        return 16, 16, 4, 4, 140, 56, 2
        
    elif ( nrow ==  72 and ncol ==  72 ):
        return 16, 16, 4, 4, 92, 36, 4
    elif ( nrow ==  80 and ncol ==  80 ):
        return 18, 18, 4, 4, 114, 48, 4
    elif ( nrow ==  88 and ncol ==  88 ):
        return 20, 20, 4, 4, 144, 56, 4
    elif ( nrow ==  96 and ncol ==  96 ):
        return 22, 22, 4, 4, 174, 68, 4
        
    elif ( nrow ==  104 and ncol ==  104 ):
        return 24, 24, 4, 4, 136, 56, 6    
    elif ( nrow ==  120 and ncol ==  120):
        return 18, 18, 6, 6, 175, 68, 6
        
    elif ( nrow ==  132 and ncol ==  132):
        return 20, 20, 6, 6, 163, 62, 8
        
    elif (nrow == 144 and ncol == 144):
        return 22, 22, 6, 6, 0, 0, 0        #there are two separate sections of the data matrix with
                                            #different interleaving and reed-solomon parameters.
                                            #this will be handled separately
    
    #RECTANGULAR SYMBOLS
    elif ( nrow ==  8 and ncol ==  18 ):
        return  6, 16, 1, 1, 5, 7, 1
    elif ( nrow ==  8 and ncol ==  32 ):
        return  6, 14, 1, 2, 10, 11, 1
    elif ( nrow ==  12 and ncol ==  26 ):
        return  10, 24, 1, 1, 16, 14, 1
    elif ( nrow ==  12 and ncol ==  36 ):
        return  10, 16, 1, 2, 22, 18, 1
    elif ( nrow ==  16 and ncol ==  36 ):
        return  14, 16, 1, 2, 32, 24, 1
    elif ( nrow ==  16 and ncol ==  48 ):
        return  14, 22, 1, 2, 49, 28, 1
    
    #RETURN ERROR
    else:
        inkex.errormsg(_('Unrecognised DataMatrix size'))
    
    return None
    
# CODEWORD STREAM GENERATION =========================================
#take the text input and return the codewords,
#including the Reed-Solomon error-correcting codes.
#=====================================================================

def get_codewords( text, nd, nc, inter, size144 ):
    #convert the data to the codewords
    data = encode_to_ascii( text )
    
    if not size144:    #render a "normal" datamatrix
        data_blocks = partition_data(data, nd*inter)  #partition into data blocks of length nd*inter -> inter Reed-Solomon block
    
        data_blocks = interleave( data_blocks, inter)   # interleave consecutive inter blocks if required
    
        data_blocks = reed_solomon(data_blocks, nd, nc) #generate and append the Reed-Solomon codewords
    
        data_blocks = combine_interleaved(data_blocks, inter, nd, nc, False)  #concatenate Reed-Solomon blocks bound for the same datamatrix
        
    else: #we have a 144x144 datamatrix
        data_blocks = partition_data(data, 1558) #partition the data into datamtrix-sized chunks (1558 =156*8 + 155*2 )
        
        for i in range(len(data_blocks)):  #for each datamtrix
            
            
            inter = 8
            nd = 156
            nc = 62
            block1 = data_blocks[i][0:156*8]
            block1 = interleave( [block1], inter)   # interleave into 8 blocks
            block1 = reed_solomon(block1, nd, nc) #generate and append the Reed-Solomon codewords
            
            inter = 2
            nd = 155
            nc = 62
            block2 = data_blocks[i][156*8:]
            block2 = interleave( [block2], inter)   # interleave into 2 blocks
            block2 = reed_solomon(block2, nd, nc) #generate and append the Reed-Solomon codewords
            
            blocks = block1
            blocks.extend(block2)
                
            blocks = combine_interleaved(blocks, 10, nd, nc, True)  
            
            data_blocks[i] = blocks[0]

        
    return data_blocks
    

#Takes a codeword stream and splits up into "inter" blocks.
#eg interleave( [1,2,3,4,5,6], 2 ) -> [1,3,5], [2,4,6]
def interleave( blocks, inter):

    if inter == 1:       # if we don't have to interleave, just return the blocks
        return blocks
    else:
        result = []
        for block in blocks:    #for each codeword block in the stream
            block_length = len(block)/inter    #length of each interleaved block
            inter_blocks = [[0] * block_length for i in xrange(inter)]   #the interleaved blocks
            
            for i in range(block_length):   #for each element in the interleaved blocks
                for j in range(inter):       #for each interleaved block
                    inter_blocks[j][i] = block[ i*inter + j ]
            
            result.extend(inter_blocks) #add the interleaved blocks to the output
        
        return result
        
#Combine interleaved blocks into the groups for the same datamatrix
#
#e.g combine_interleaved( [[d1, d3, d5, e1, e3, e5], [d2, d4, d6, e2, e4, e6]], 2, 3, 3 )
#   --> [[d1, d2, d3, d4, d5, d6, e1, e2, e3, e4, e5, e6]]
def combine_interleaved( blocks, inter, nd, nc, size144):
    if inter == 1:  #the blocks aren't interleaved
        return blocks
    else:
        result = []
        for i in range( len(blocks) / inter ):  #for each group of "inter" blocks -> one full datamatrix
            data_codewords = [] #interleaved data blocks
            
            if size144:
                nd_range = 1558 #1558 = 156*8 + 155*2
                nc_range = 620   #620 = 62*8 + 62*2
            else:
                nd_range = nd*inter
                nc_range = nc*inter
            
            for j in range(nd_range):  #for each codeword in the final list
                data_codewords.append( blocks[i*inter + j%inter][j/inter] )

            for j in range(nc_range):  #for each block, add the ecc codewords
                data_codewords.append( blocks[i*inter + j%inter][nd + j/inter] )

            result.append(data_codewords)
        return result
    
#checks if an ASCII character is a digit from 0 - 9
def is_digit( char ):
    
    if ord(char) >= 48 and ord(char) <= 57:
        return True
    else:
        return False
    
def encode_to_ascii( text):

    ascii = []
    i = 0
    while i < len(text):
        #check for double digits
        if is_digit( text[i] ) and ( i < len(text)-1) and is_digit( text[i+1] ):   #if the next char is also a digit
            
            codeword = int( text[i] + text[i+1] ) + 130
            ascii.append( codeword )
            i = i + 2   #move on 2 characters
        else: #encode as a normal ascii, 
            ascii.append( ord(text[i] ) + 1 ) #codeword is ASCII value + 1 (ISO 16022:2006 5.2.3)
            i = i + 1   #next character
            
    return ascii

    
#partition data into blocks of the appropriate size to suit the
#Reed-Solomon block being used.
#e.g. partition_data([1,2,3,4,5], 3) -> [[1,2,3],[4,5,PAD]]
def partition_data( data , rs_data):

    PAD_VAL = 129        # PAD codeword (ISO 16022:2006 5.2.3)
    data_blocks = []
    i = 0
    while i < len(data):
        if len(data) >= i+rs_data:  #we have a whole block in our data
            data_blocks.append( data[i:i+rs_data] )
            i = i + rs_data
        else:   #pad out with the pad codeword
            data_block = data[i:len(data)] #add any remaining data
            pad_pos = len(data)
            padded = False
            while len(data_block) < rs_data:#and then pad with randomised pad codewords
                if not padded:
                    data_block.append( PAD_VAL ) #add a normal pad codeword
                    padded = True
                else:
                    data_block.append( randomise_pad_253( PAD_VAL, pad_pos) )
                pad_pos = pad_pos + 1
            data_blocks.append( data_block)
            break
            
    return data_blocks
    
#Pad character randomisation, to prevent regular patterns appearing
#in the data matrix
def randomise_pad_253(pad_value, pad_position ):
    pseudo_random_number = ( ( 149 * pad_position ) % 253 )+ 1 
    randomised = pad_value + pseudo_random_number
    if ( randomised <= 254 ):
        return randomised
    else:
        return randomised - 254
        
# REED-SOLOMON ENCODING ROUTINES =====================================
    
# "prod(x,y,log,alog,gf)" returns the product "x" times "y"
def prod(x, y, log, alog, gf):
    
    if ( x==0 or y==0):
        return 0
    else:
        result = alog[ ( log[x] + log[y] ) % (gf - 1) ]
        return result

# generate the log & antilog lists:
def gen_log_alog(gf, pp):
    log = [0]*gf
    alog = [0]*gf

    log[0] = 1-gf
    alog[0] = 1
    
    for i in range(1,gf):
        alog[i] = alog[i-1] * 2
        
        if (alog[i] >= gf):
            alog[i] = alog[i] ^ pp
            
        log[alog[i]] = i 
        
    return log, alog
    
# generate the generator polynomial coefficients:
def gen_poly_coeffs(nc, log, alog, gf):
    c = [0] * (nc+1)
    c[0] = 1

    for i in range(1,nc+1):
        c[i] = c[i-1] 
        
        j = i-1
        while j >= 1:
            c[j] = c[j-1] ^ prod(c[j],alog[i],log,alog,gf)
            j = j - 1
        
        c[0] = prod(c[0],alog[i],log,alog,gf)
        
    return c
    
# "ReedSolomon(wd,nd,nc)" takes "nd" data codeword values in wd[]
# and adds on "nc" check codewords, all within GF(gf) where "gf" is a
# power of 2 and "pp" is the value of its prime modulus polynomial */ 
def reed_solomon(data, nd, nc):
    #parameters of the polynomial arithmetic
    gf = 256  #operating on 8-bit codewords -> Galois field = 2^8 = 256
    pp = 301  #prime modulus polynomial for ECC-200 is 0b100101101 = 301 (ISO 16022:2006 5.7.1)
    
    log, alog = gen_log_alog(gf,pp)
    c = gen_poly_coeffs(nc, log, alog, gf)

    for block in data: #for each block of data codewords

        block.extend( [0]*(nc+1) ) #extend to make space for the error codewords
        
        #generate "nc" checkwords in the list block
        for i in range(0, nd):
            k = block[nd] ^ block[i]
            
            for j in range(0,nc):
                block[nd+j] = block[nd+j+1] ^ prod(k,c[nc-j-1],log, alog,gf)
                
        block.pop()

    return data
    
#MODULE PLACEMENT ROUTINES===========================================
#   These routines take a steam of codewords, and place them into the
#   DataMatrix in accordance with Annex F of BS ISO/IEC 16022:2006

# bit() returns the bit'th bit of the byte
def bit(byte, bit):
    #the MSB is bit 1, LSB is bit 8
    return ( byte >> (8-bit) ) %2
    
# "module" places a given bit with appropriate wrapping within array
def module(array, nrow, ncol, row, col, bit) :
    if (row < 0) :
        row = row + nrow
        col = col + 4 - ((nrow+4)%8)
        
    if (col < 0):
        col = col + ncol
        row = row + 4 - ((ncol+4)%8) 

    array[row][col] = bit

def corner1(array, nrow, ncol, char): 
    module(array, nrow, ncol, nrow-1, 0,      bit(char,1)); 
    module(array, nrow, ncol, nrow-1, 1,      bit(char,2)); 
    module(array, nrow, ncol, nrow-1, 2,      bit(char,3)); 
    module(array, nrow, ncol, 0,      ncol-2, bit(char,4)); 
    module(array, nrow, ncol, 0,      ncol-1, bit(char,5)); 
    module(array, nrow, ncol, 1,      ncol-1, bit(char,6)); 
    module(array, nrow, ncol, 2,      ncol-1, bit(char,7)); 
    module(array, nrow, ncol, 3,      ncol-1, bit(char,8)); 

def corner2(array, nrow, ncol, char):
    module(array, nrow, ncol, nrow-3, 0,      bit(char,1)); 
    module(array, nrow, ncol, nrow-2, 0,      bit(char,2)); 
    module(array, nrow, ncol, nrow-1, 0,      bit(char,3)); 
    module(array, nrow, ncol, 0,      ncol-4, bit(char,4)); 
    module(array, nrow, ncol, 0,      ncol-3, bit(char,5)); 
    module(array, nrow, ncol, 0,      ncol-2, bit(char,6)); 
    module(array, nrow, ncol, 0,      ncol-1, bit(char,7)); 
    module(array, nrow, ncol, 1,      ncol-1, bit(char,8)); 

def corner3(array, nrow, ncol, char):
    module(array, nrow, ncol, nrow-3, 0,      bit(char,1)); 
    module(array, nrow, ncol, nrow-2, 0,      bit(char,2)); 
    module(array, nrow, ncol, nrow-1, 0,      bit(char,3)); 
    module(array, nrow, ncol, 0,      ncol-2, bit(char,4)); 
    module(array, nrow, ncol, 0,      ncol-1, bit(char,5)); 
    module(array, nrow, ncol, 1,      ncol-1, bit(char,6)); 
    module(array, nrow, ncol, 2,      ncol-1, bit(char,7)); 
    module(array, nrow, ncol, 3,      ncol-1, bit(char,8)); 

def corner4(array, nrow, ncol, char):
    module(array, nrow, ncol, nrow-1, 0,      bit(char,1)); 
    module(array, nrow, ncol, nrow-1, ncol-1, bit(char,2)); 
    module(array, nrow, ncol, 0,      ncol-3, bit(char,3)); 
    module(array, nrow, ncol, 0,      ncol-2, bit(char,4)); 
    module(array, nrow, ncol, 0,      ncol-1, bit(char,5)); 
    module(array, nrow, ncol, 1,      ncol-3, bit(char,6)); 
    module(array, nrow, ncol, 1,      ncol-2, bit(char,7)); 
    module(array, nrow, ncol, 1,      ncol-1, bit(char,8));
    
#"utah" places the 8 bits of a utah-shaped symbol character in ECC200
def utah(array, nrow, ncol, row, col, char):
    module(array, nrow, ncol,row-2, col-2, bit(char,1))
    module(array, nrow, ncol,row-2, col-1, bit(char,2))
    module(array, nrow, ncol,row-1, col-2, bit(char,3))
    module(array, nrow, ncol,row-1, col-1, bit(char,4))
    module(array, nrow, ncol,row-1, col,   bit(char,5))
    module(array, nrow, ncol,row,   col-2, bit(char,6))
    module(array, nrow, ncol,row,   col-1, bit(char,7))
    module(array, nrow, ncol,row,   col,   bit(char,8))

#"place_bits" fills an nrow x ncol array with the bits from the 
# codewords in data. 
def place_bits(data, (nrow, ncol)): 
# First, fill the array[] with invalid entries */ 
    INVALID = 2
    array = [[INVALID] * ncol for i in xrange(nrow)]   #initialise and fill with -1's (invalid value)
# Starting in the correct location for character #1, bit 8,...
    char = 0
    row = 4
    col = 0
    while True:
    
    #first check for one of the special corner cases, then... 
        if ((row == nrow) and (col == 0)):
            corner1(array, nrow, ncol, data[char])
            char = char + 1
        if ((row == nrow-2) and (col == 0) and (ncol%4)) :
            corner2(array, nrow, ncol, data[char])
            char = char + 1
        if ((row == nrow-2) and (col == 0) and (ncol%8 == 4)):
            corner3(array, nrow, ncol, data[char])
            char = char + 1
        if ((row == nrow+4) and (col == 2) and ((ncol%8) == 0)):
            corner4(array, nrow, ncol, data[char])
            char = char + 1
        
        #sweep upward diagonally, inserting successive characters,...
        while True:
            if ((row < nrow) and (col >= 0) and (array[row][col] == INVALID)) :
                utah(array, nrow, ncol,row,col,data[char])
                char = char+1
            row = row - 2
            col = col + 2
            
            if not((row >= 0) and (col < ncol)):
                break
            
        row = row + 1
        col = col + 3 
                
        # & then sweep downward diagonally, inserting successive characters,...
        while True:
            if ((row >= 0) and (col < ncol) and (array[row][col] == INVALID)) :
                utah(array, nrow, ncol,row,col,data[char])
                char = char + 1
            row = row + 2
            col = col - 2 
        
            if not((row < nrow) and (col >= 0)):
                break
        
        row = row + 3
        col = col + 1
        
        #... until the entire array is scanned
        if not((row < nrow) or (col < ncol)):
            break

    # Lastly, if the lower righthand corner is untouched, fill in fixed pattern */ 
    if (array[nrow-1][ncol-1] == INVALID): 
        array[nrow-1][ncol-2] = 0
        array[nrow-1][ncol-1] = 1
        array[nrow-2][ncol-1] = 0
        array[nrow-2][ncol-2] = 1

    return array    #return the array of 1's and 0's
    
    
def add_finder_pattern( array, data_nrow, data_ncol, reg_row, reg_col ):

    #get the total size of the datamatrix
    nrow = (data_nrow+2) * reg_row
    ncol = (data_ncol+2) * reg_col

    datamatrix = [[0] * ncol for i in xrange(nrow)]   #initialise and fill with 0's
    
    for i in range( reg_col ):    #for each column of data regions
        for j in range(nrow):
            datamatrix[j][i*(data_ncol+2)] = 1  #vertical black bar on left
            datamatrix[j][i*(data_ncol+2)+data_ncol+1] = (j)%2 # alternating blocks
            
    for i in range( reg_row):   # for each row of data regions
        for j in range(ncol):
            datamatrix[i*(data_nrow+2)+data_nrow+1][j] = 1  #horizontal black bar at bottom
            datamatrix[i*(data_nrow+2)][j] = (j+1)%2 # alternating blocks
            
    for i in range( data_nrow*reg_row ):
        for j in range( data_ncol* reg_col ):
            dest_col = j + 1 + 2*(j/(data_ncol)) #offset by 1, plus two for every addition block
            dest_row = i + 1 + 2*(i/(data_nrow))
            
            datamatrix[dest_row][dest_col] = array[i][j]    #transfer from the plain bit array
            
    return datamatrix
    
#RENDERING ROUTINES ==================================================
#   Take the array of 1's and 0's and render as a series of black
#   squares. A binary 1 is a filled square
#=====================================================================

#SVG element generation routine
def draw_SVG_square((w,h), (x,y), parent):

    style = {   'stroke'        : 'none',
                'stroke-width'  : '1',
                'fill'          : '#000000'
            }
                
    attribs = {
        'style'     :simplestyle.formatStyle(style),
        'height'    : str(h),
        'width'     : str(w),
        'x'         : str(x),
        'y'         : str(y)
            }
    circ = inkex.etree.SubElement(parent, inkex.addNS('rect','svg'), attribs )
    
#turn a 2D array of 1's and 0's into a set of black squares
def render_data_matrix( module_arrays, size, spacing, parent):
    
    for i in range(len(module_arrays)): #for each data matrix
    
        height = len(module_arrays[i])
        width  = len(module_arrays[i][0] )
        
        for y in range(height):     #loop over all the modules in the datamatrix
            for x in range(width):
                
                if module_arrays[i][y][x] == 1: #A binary 1 is a filled square
                    draw_SVG_square((size,size), (x*size + i*spacing,y*size), parent)
                elif module_arrays[i][y][x] != 0: #we have an invalid bit value
                    inkex.errormsg(_('Invalid bit value, this is a bug!'))
    
00611 class DataMatrix(inkex.Effect):
    def __init__(self):
        inkex.Effect.__init__(self)
        
        #PARSE OPTIONS
        self.OptionParser.add_option("--text",
            action="store", type="string",
            dest="TEXT", default='Inkscape')
        self.OptionParser.add_option("--rows",
            action="store", type="int",
            dest="ROWS", default=10)
        self.OptionParser.add_option("--cols",
            action="store", type="int",
            dest="COLS", default=10)
        self.OptionParser.add_option("--size",
            action="store", type="int",
            dest="SIZE", default=4)
            
    def effect(self):
        
        so = self.options
        
        if so.TEXT == '':  #abort if converting blank text
            inkex.errormsg(_('Please enter an input string'))
        else:
        
            #INKSCAPE GROUP TO CONTAIN EVERYTHING
            
            centre = self.view_center   #Put in in the centre of the current view
            grp_transform = 'translate' + str( centre )
            grp_name = 'DataMatrix'
            grp_attribs = {inkex.addNS('label','inkscape'):grp_name,
                           'transform':grp_transform }
            grp = inkex.etree.SubElement(self.current_layer, 'g', grp_attribs)#the group to put everything in
            
            #GENERATE THE DATAMATRIX
            encoded = encode( so.TEXT, (so.ROWS, so.COLS) ) #get the pattern of squares
            render_data_matrix( encoded, so.SIZE, so.COLS*so.SIZE*1.5, grp )    # generate the SVG elements
            
if __name__ == '__main__':
    e = DataMatrix()
    e.affect()

# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99

Generated by  Doxygen 1.6.0   Back to index